Search results for "B-RAF inhibitor"

showing 2 items of 2 documents

BRAF mutations in non-small cell lung cancer : has finally Janus opened the door?

2016

Abstract: B-Raf mutations occur in about 1-2% of non-small cell lung cancers (NSCLC). These mutations generate a permanent activation of the mitogen activated protein kinase (MAPK) pathway, which promotes tumor growth and proliferation. In the present review, we discuss B-Raf mutation epidemiology, diagnostic methods to detect B-Raf mutations, the role of B-Raf as a driver mutation and a potential therapeutic target in NSCLC. The results of clinical trials involving B-Raf or MAPK pathway inhibitors for the treatment of NSCLC are also discussed. Clinical trials evaluating B-Raf inhibitors in BRAF mutated NSCLC patients have shown promising results, and larger prospective studies are warrante…

MAPK/ERK pathwayProto-Oncogene Proteins B-rafmedicine.medical_specialtyLung Neoplasmsmedicine.medical_treatmentCellProtein Kinase Inhibitormedicine.disease_causeBioinformaticsNSCLCTargeted therapy03 medical and health sciences0302 clinical medicineInternal medicineCarcinoma Non-Small-Cell LungmedicineHumans030212 general & internal medicineB-Raf inhibitorLung cancerProtein Kinase InhibitorsB-Raf inhibitorsMutationHematologybiologybusiness.industryB-RafB-Raf; B-Raf inhibitors; Drug; Mutation; NSCLC; Oncology; Hematology; Geriatrics and GerontologyHematologymedicine.diseaseLung NeoplasmClinical trialmedicine.anatomical_structureOncologyDrug Resistance Neoplasm030220 oncology & carcinogenesisMitogen-activated protein kinaseMutationbiology.proteinCancer researchHuman medicineDrugGeriatrics and GerontologybusinessHumanCritical reviews in oncology, hematology
researchProduct

What links BRAF to the heart function? new insights from the cardiotoxicity of BRAF inhibitors in cancer treatment

2015

The RAS-related signalling cascade has a fundamental role in cell. It activates differentiation and survival. It is particularly important one of its molecules, B-RAF. B-RAF has been a central point for research, especially in melanoma. Indeed, it lacked effective therapeutic weapons since the early years of its study. Molecules targeting B-RAF have been developed. Nowadays, two classes of molecules are approved by FDA. Multi-target molecules, such as Sorafenib and Regorafenib, and selective molecules, such as Vemurafenib and Dabrafenib. Many other molecules are still under investigation. Most of them are studied in phase 1 trials. Clinical studies correlate B-RAF inhibitors and QT prolonga…

SorafenibProto-Oncogene Proteins B-rafB-RAF inhibitorscardio-oncologySkin NeoplasmscardiotoxicityAntineoplastic AgentsReviewB-RAF inhibitorPharmacologyQT intervalSudden cardiac deathchemistry.chemical_compoundRegorafenibmedicineAnimalsHumansMolecular Targeted TherapydabrafenibVemurafenibMelanomaProtein Kinase InhibitorsCardiotoxicityClinical Trials as Topicbusiness.industryMelanomaB-RAFDabrafenibArrhythmias CardiacHeartmedicine.diseaseOncologychemistryCancer researchbusinessmedicine.drugSignal TransductionOncotarget
researchProduct